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Summary. Offspring-parent regression is a simple meth-
od for estimating heritability. This method yields un-
biased estimates even when parents are selected. The
usual model in offspring-parent regression assumes that
observations have the same mean. This assumption,
however, is not met in many situations. A method for
estimating heritability by offspring-parent regression
when observations do not have a common mean is pre-
sented. The estimator is distributed as a multiple of a t
random variable centered at its parametric value and is
unbiased even when the parents are selected. When ob-
servations have a common mean, the method reduces to
the “usual” regression estimator.
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Introduction

Heritability (h?) is useful to study genetic change of a
population undergoing selection (e.g., Falconer 1981) and
to choose among alternative breeding programs (e.g.,
Robertson 1957; Hill 1971). Offspring-parent regression
is a widely used estimator of h? that is simple to compute
and is unbiased even when selection of parents occurs
(Falconer 1981). This is the only method that has been
proved to be unbiased in the presence of selection.

The usual model for offspring-parent regression as-
sumes that observations have a common mean. In many
applications, however, phenotypic values of parents or of
offspring are affected by several sources of variation. For
example, measurements on parents may be taken on indi-
viduals that received different treatments, and offspring

can be classified by sex, birth group, etc. Some research-
ers have recognized this problem and have used ad hoc
methods to adjust the data to have a common mean. The
distributional properties of such methods are not well
defined. The objective of this paper is to present a meth-
od, with well known distributional properties, to estimate
heritability by offspring-parent regression when observa-
tions do not have a common mean. This method of esti-
mation has the attractive property of the “usual” regres-
sion estimator of remaining unbiased in the presence of
selection.

Regression estimator

Suppose (P, O,)...(P,, O,) are observed values of a
trait in n unrelated parent-offspring pairs in a random
mating population. For many traits, it is reasonable to
assume that (P;, O,) follow independent bivariate normal
distributions with mean vector:

e[o]= 1]

and variance-covariance matrix:

The above assumptions imply that parents are a random
sample from a conceptual population. Further, the means
of the vectors of phenotypic records can be expressed as

E(P)=W,f, and E(0)=W,§, (1)

where W, and W, are known incidence matrices, and B,
and B, are unknown fixed effects affecting parent and
offspring records, respectively.



804

To obtain the regression estimator we use a multiva-
riate linear model for P and O:

B, 0
0 B

where the vectors of residuals e, and e, have null expecta-
tions. Parents are assumed to be unrelated, so that

[P’ O] = [Wp5 wo] [ ] + [ep’ eo] (2)

Var(e,) = L o2, Var(e,) =I07 and Cov(e,,¢,) =1q,

where I is an identity matrix of order n. The residuals can
be predicted as

(&, &] = M[P, O] &)

where M=[1-WWW) W], W=[W W] and
(W'W)~ is a generalized inverse of W W.

Let S be a 2 x 2 matrix of sums of squares and cross-
products of predicted residuals.

The regression of offspring on parent () is estimated as

G =815/8y; “

Distribution of the regression estimator

In order to derive the distribution of 4, let Z be a
2 x (n — r) matrix of standard normal, independent ran-
dom variables where r is the rank of W, and let C be a
2 x 2 lower triangular matrix such that

2 =CC (5
The matrix
Q=CZZC (6)

and the matrix S have the same Wishart distribution with
n — r degrees of freedom and parameter matrix X (Ander-
son 1984). The matrix ZZ' can be written as

77’ = BB’ (7

where B is a 2 x 2 lower triangular matrix; this relation-
ship is known as the Bartlett decomposition of ZZ’ (An-
derson 1984). Diagonal elements of B are independent chi
random variables with element i having n — [(r — 1) + i]
degrees of freedom; the off-diagonal element of B is a
standard normal random variable independent of the
diagonal elements. Now, Q in (6) can be written in terms
of [7] as

Q=CZZ(C = CBBC =XX' (8)

where X = CB is a lower triangular matrix. Because the
matrix Q has the same distribution as S, the distribution

of 4 is identical to that of
Q12/11 = X110 X21/XF 1 = X31/X 14 )

From (8), we have that

X1y = €1y byy (10)
Xa1 = €23 byy 4+ Capbyy (11)
and

X21/%11 = (€21/€11) + (C22/€11) (b21/b14) (12)
Also, from (5) it follows that

€1y = 0y (13)
C1 = O'po/o'p (14)
€32 = (0 — Gf,o/af,)”z (15)

Substituting (13)—(15) into (12) gives
X21/X1 =&+ (0.3/0_12’ - ‘12)1/2 (bz1/b14) (16)

The only random variables in (16) are the elements b,,
and b,, from the Bartlett decomposition. The ratio
(n —1)*?b,,/b,, has a t distribution with n — r degrees
of freedom because b,, and b, ; are independent random
variables with a standard normal distribution and a chi
distribution with n — r degrees of freedom, respectively.
Because the distribution of & is identical to that of

X21/X115
&~ o+ (a2/or — «®)* t[n — 1] /(n — 1)!7? a7n

where t[n — r] is a t random variable with n — r degrees

of freedom. For the situation considered here, 63 = o?
= ¢? is the phenotypic variance, and ¢,,,/62 = & = h?/2.

Thus, (17) can be written as

&~ h?2+ 1 —h*H" t[n — 1] /(n — 1)*/? (18)
From (18),

E(@)=h*2=q«a

and

Var(d) = (1 —h*/4)/(n — 1 —2) (19)
for n — r > 2 because

Var(tfn— ) =(n—rn/(n—r1r —2)

for n — r > 2. Because heritability is estimated as 24, the
estimator of heritability is also distributed as 24.

When more than one offspring per parent are record-
ed, the offspring means are regressed on the parental
records. For example, if s half-sib records are available
for each sire, the variance of the offspring mean is:

o5 = a*[(h*/4) + (1 — h?/4)/s] (20)

As before, Var(p,) = 62, and the regression of offspring
mean onsire, « = a,,,/072, is equal to h?/2, where Gy 18 the



covariance between the sire record and the offspring
mean. Substituting (20) in (17) and rearranging gives

& ~ h%/2 + [h?(1 — h?)/4

+ (1 —h%/4)/s]V2t[n — 1]/(n — r)*/? (21)
and the variance of estimator is
Var(d@) = [h®2(1 — h?)/4 + (1 —h%/4)/s]/mn—1—2) (22)

forn—r>2.
When regression is on mid-parent, h? = o« and the
distribution of the regression estimator is 23)

& ~ h? + [h2(1— h?) + 2 — h3)s]2 t[n — rl/(n — r)*/2

where s is the number of offspring per family and n is the
number of families. The variance of the estimator is

Var(d) = [h*(1 —h?) + 2 —h¥)/s]n —r — 2) (24)

forn—r> 2.

Distribution of the estimator under selection of parents

The regression estimator (4) remains unbiased even when
parents are selected. To demonstrate this it is sufficient to
show that

E@|P) =« 25)

because the unconditional expectation of 4 is the ex-
pected value of (25) taken over the sample space of P.
When parents are selected, the sample space of P is al-
tered. However, if (25) is true, the unconditional expecta-
tion is also a, irrespective of the sample space of P.

To prove that (25) is true, write & given by (4) as

4= &8 /@e) (26)
Now, (25) can be written as
E(@|P) = E[8,8,/(&,¢,) | P] = &, E(MO|P)/(€,)
=& M[W, B, + Cov(O,P’)Var~ L)
(P — W, B /(&8,) 27

Because Cov(O,P) = Io ,, Var(P) = Is2, MW, = 0 and
MW, =0, (27) becomes

po’

E(@E|P) = é’pMP(apo/af,)/(é’Pé ) = am/ag =a

P

where M is defined previously. This proves (25) and,
therefore, « is unbiased even when the parents are se-
lected. The sampling distribution of the estimator, how-
ever, will be altered due to selection, to an extent depend-
ing on the form of selection.

Numerical example

Hypothetical weaning weights (arbitrary units) for eight
parent-offspring pairs of beef cattle raised under two dif-
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ferent management systems are given in Table 1. The
incidence matrices corresponding to these data are

10 10
10 10
10 0 1
10 0 1
W, = 1 0 and W, = 1 0
0 1 10
0 1 01
10 1] |0 1]

and the matrix W is

1 010
1010
1 00 1
100 1
W=1l1010
0110
010 1
(0 1 0 1]

The residuals &, and &, can be calculated as
[&,,&] =[P, O] - WWW)"W'[P, O]

where P and O are the weaning weights of the parents
and offspring, respectively, from Table 1. The regression
estimate of offspring on parent, taking into account the
different management systems, is

d = &,8,/(e,&)=1.06/7.63 =0.14
and
f2 =24 =028

An estimate of the variance of & can be obtained by
substituting h? for h? in (19). Thus, Var(4) = 0.33. The
“usual” regression estimate of h? for this data is 0.15.

Table 1. Data for numerical example

Parents Offspring

MS? A A MS*? WwWw?*
1 352 1 5.53

1 4.62 1 4.31

1 6.70 2 6.87

1 3.03 2 6.07

1 431 1 5.73

2 571 1 4.72

2 5.63 2 6.02

2 5.70 2 4.89

* Management system
®* Weaning weight in arbitrary units



806

Conclusion

When all observations have the same mean, the estimator
presented here reduces to the “usual” offspring-parent
regression estimator. The distribution and variance of the
“usual” estimator are given by (18) and (19), with r = 1,
in agreement with Kendall and Stuart (1977). The vari-
ance of the “usual” regression estimator has been given
incorrectly by others (e.g., Pirchner 1969; Falconer 1981)
with (n — 2) in the denominator of (19). As with the
“usual” offspring-parent regression estimator, this gener-
alized regression estimator remains unbiased with the
selection of parents. The numerator and denominator
however, will be biased and the distribution of the estima-
tor will be altered when selection occurs.
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