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Summary. Offspring-parent regression is a simple meth- 
od for estimating heritability. This method yields un- 
biased estimates even when parents are selected. The 
usual model in offspring-parent regression assumes that 
observations have the same mean. This assumption, 
however, is not  met in many situations. A method for 
estimating heritability by offspring-parent regression 
when observations do not have a common mean is pre- 
sented. The estimator is distributed as a multiple of a t 
random variable centered at its parametric value and is 
unbiased even when the parents are selected. When ob- 
servations have a common mean, the method reduces to 
the "usual" regression estimator. 
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Introduction 

Heritability (h 2) is useful to study genetic change of a 
population undergoing selection (e.g., Falconer 1981) and 
to choose among alternative breeding programs (e.g., 
Robertson 1957; Hill 1971). Offspring-parent regression 
is a widely used estimator of h 2 that is simple to compute 
and is unbiased even when selection of parents occurs 
(Falconer 1981). This is the only method that has been 
proved to be unbiased in the presence of selection. 

The usual model for offspring-parent regression as- 
sumes that observations have a common mean. In many 
applications, however, phenotypic values of parents or of 
offspring are affected by several sources of variation. For  
example, measurements on parents may be taken on indi- 
viduals that received different treatments, and offspring 

can be classified by sex, birth group, etc. Some research- 
ers have recognized this problem and have used ad hoc 
methods to adjust the data to have a common  mean. The 
distributional properties of such methods are not well 
defined. The objective of this paper is to present a meth- 
od, with well known distributional properties, to estimate 
heritability by offspring-parent regression when observa- 
tions do not have a common mean. This method of esti- 
mation has the attractive property of the "usual" regres- 
sion estimator of remaining unbiased in the presence of 
selection. 

Regression estimator 

Suppose (P1, O1). . .  (P,,  On) are observed values of a 
trait in n unrelated parent-offspring pairs in a random 
mating population. For  many traits, it is reasonable to 
assume that (Pi, On) follow independent bivariate normal 
distributions with mean vector: 

E Oi kPoiJ 

and variance-covariance matrix: 

Var[Pil  P~ 
Lo,j = L~o~ ~ J = 

The above assumptions imply that parents are a random 
sample from a conceptual population. Further, the means 
of the vectors of phenotypic records can be expressed as 

E(P) = Wp•p and E(O) = Wofl o (1) 

where Wp and W o are known incidence matrices, and tip 
and flo are unknown fixed effects affecting parent and 
offspring records, respectively. 
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To ob t a in  the regression es t imator  we use a mul t iva-  
riate l inear  model  for P a n d  O: 

[ P ' O ] = [ W p ' W ~  [ ~p Off] + [ e p ' e ~  (2) 

where the vectors of residuals ep an d  e o have null  expecta- 
t ions. Paren t s  are assumed to be unrelated,  so that  

2 Var(eo) = I 2 an d  Coy(%,  e'o) = 1 0-po Var ( ep )  = 1 o.p, 0.0 

where I is an  ident i ty  mat r ix  of order  n. The  residuals can 
be predicted as 

[rp, 6o1 = M [P, O] (3) 

where M = [I - W ( W '  W ) - W ' ] ,  W = [Wp, Wo], and  
(W' W ) -  is a general ized inverse of W'  W. 

Let S be a 2 x 2 matr ix  of sums of squares and  cross- 
p roduc t s  of predicted residuals. 

F . . . . . .  ] S = epep epe o 
^, ^ ^p ^t 

[_eo% eoeoJ 

The  regression of offspring on  pa ren t  (~) is es t imated as 

o2 = Slz/S 1, (4) 

Distribution o f  the regression estimator 

In  order  to derive the d i s t r ibu t ion  of 01, let Z be a 
2 • (n - r) mat r ix  of s t anda rd  normal ,  i ndependen t  ran-  
d o m  variables  where r is the r ank  of W, an d  let C be a 
2 x 2 lower t r i angu la r  matr ix  such that  

Z = CC'  (5) 

The  mat r ix  

Q = C Z Z ' C '  (6) 

and  the matr ix  S have the same Wishar t  d i s t r ibu t ion  with 
n - r degrees of f reedom a n d  pa ramete r  matr ix  X (Ander-  
son 1984). The mat r ix  Z Z '  can  be wri t ten as 

Z Z ' =  BB' (7) 

where B is a 2 x 2 lower t r i angula r  matrix;  this relat ion-  
ship is k n o w n  as the Bart let t  decompos i t ion  of Z Z '  (An- 
derson  1984). D iagona l  e lements  of B are independen t  chi 
r a n d o m  variables  with e lement  i hav ing  n - [(r - 1) + i] 
degrees of freedom; the off-diagonal  e lement  of B is a 
s t anda rd  n o r m a l  r a n d o m  variable  i ndependen t  of the 
d iagona l  elements.  Now,  Q in (6) can be wri t ten in terms 
of [7] as 

Q = C Z Z ' C '  = CBB'C '  = XX' (8) 

where X = CB is a lower t r i angula r  matrix.  Because the 
mat r ix  Q has the same d i s t r ibu t ion  as S, the d i s t r ibu t ion  

of ~ is identical  to that  of 

qa2 /q l l  = xalx21/X121 = X21/Xll (9) 

F r o m  (8), we have that  

Xii = c i i b l l  (10) 

x21 = c21b l l  + c22b21 (11) 

and  

X 2 i / X i l  = ( C 2 1 / C i i )  -+- ( C 2 2 / C l l )  ( b 2 i / b l i )  ( 1 2 )  

Also, from (5) it follows that  

C11 = 0"p (13) 

C21 = 0-po/O'p (14) 
C22 (0.2 2 2 1/2 = - % o / % )  ( i s )  

Subst i tu t ing  (1 3)-(1 5) into (12) gives 

2 2 X 2 1 / X l l  = ~ + (0-o/0-p - -  ~ 2 ) l / 2 ( b 2 1 / b 1 1 )  ( 1 6 )  

The only  r a n d o m  variables in (16) are the elements b21 
and  b t l  from the Bartlett  decomposi t ion.  The  rat io 
(n - r) 1/2 b21/b l l  has a t d i s t r ibut ion  with n - r degrees 
of freedom because b 21 and  b l 1 are independen t  r a n d o m  
variables with a s t andard  no rma l  d is t r ibut ion  and  a chi 
d i s t r ibu t ion  with n - r degrees of freedom, respectively. 
Because the d is t r ibut ion  of 01 is identical  to that  of 

X 2 1 / X I  1, 

2 2 __ ~2)1 /2  ~ ~ + (0-0/% t [n  - r] /(n - r )  1/2 (17) 

where t [n - r] is a t r a n d o m  variable  with n - r degrees 
2 2 of freedom. F o r  the s i tua t ion considered here, % = 0-0 

= 0 "2 is the phenotypic  variance, a n d  0-po/a2p = a = h 2 / 2 .  

Thus,  (I 7) can be wri t ten as 

02 ~ h2/2 + (1 - h4/4) ~/2 t [n  - r]/(n - 0 1/2 (18) 

F r o m  (18), 

E(01) = h2/2 = o~ 

and  

Var(a) = (1 - h4/4)/(n - r - 2) (19) 

for n - r > 2 because 

Var(t  In - r]) = (n - r)/(n - r - 2) 

for n - r > 2. Because heri tabil i ty is es t imated as 201, the 
es t imator  of heri tabil i ty is also dis t r ibuted as 2& 

W h e n  more  t han  one offspring per paren t  are record- 
ed, the offspring means  are regressed on  the paren ta l  
records. F o r  example,  if s half-sib records are avai lable 
for each sire, the var iance of the offspring m e a n  is: 

0"2 = 0"2 [(hZ/4) + (1 - h2/4)/s] (20) 

As before, Var(pl) = 0.2, and  the regression of offspring 
mean  on  sire, ~ = 0.po/a 2, is equal  to h2/2, where %0 is the 



covar i ance  be tween  the sire r ecord  and  the offspring 
mean.  Subs t i tu t ing  (20) in (17) and  r ea r r ang ing  gives 

02 ~ h2/2 + [h2(1 --  h2)/4 

+ (1 - h2/4)/s] 1/2 t [n  --  r] /(n - 0 1/2 (21) 

and  the var iance  of e s t ima to r  is 

Var (02) = [h 2 (1 - h2)/4 + (1 - h2/4)/s]/(n - r - 2) (22) 

for n - r > 2 .  
W h e n  regress ion is on mid -pa ren t ,  h E =  ct and  the 

d i s t r i bu t ion  of the regress ion e s t ima to r  is 
(23) 

02 ~ h 2 + [h2(1 -- h 2) + (2 - h2)/s] 1/2 t [n  --  r]/(n - r) 1/2 

where  s is the n u m b e r  of  offspring per  family and  n is the 
n u m b e r  of  families. The  var iance  of the e s t ima to r  is 

Var (02) = [h 2 (1 - h E) + (2 - h2)/s] (n - r - 2) (24) 

for  n - r >  2. 

Distribution of the estimator under selection of parents 

The regress ion  e s t ima to r  (4) remains  unb ia sed  even when 
pa ren t s  are selected. To d e m o n s t r a t e  this  it  is sufficient to  
show tha t  

E(02 IP) = a (25) 

because  the unco n d i t i o n a l  expec ta t ion  of 02 is the ex- 
pec ted  va lue  of (25) t aken  over  the sample  space of  P. 
W h e n  paren t s  are  selected, the sample  space of P is al-  
tered.  However ,  if (25) is true, the uncond i t i ona l  expec ta -  
t ion  is a lso  ct, i r respect ive  of  the sample  space  of  P. 

To p rove  tha t  (25) is true, wri te  02 given by  (4) as 

= ~r (26) 

Now,  (25) can  be wr i t t en  as 

E (021 P) = E [~,~.o/(~'p~p) I P] = ~'p E ( M O  I P)/(~p~p) 

= ~'p M [W o/I o + C o v  ( 0 ,  e ' )  V a r -  1 (p) 

�9 (P  --  Wp flp)]/(etpep) (27) 

Because C o v ( O ,  P')  = Iapo, Var(P)  = I a  2, M W p  = 0 and  
M W  o = 0, (27) becomes  

E(021P) ^' 2 ' ^  %o/a~ = = epMP(Opo/O-p)/(~pep) = a 

where  M is def ined previously .  This  p roves  (25) and,  
therefore,  ct is unb iased  even when  the pa ren t s  are se- 
lected. The  sampl ing  d i s t r ibu t ion  of the es t imator ,  how-  
ever, will be a l te red  due to  selection,  to  an  extent  depend-  
ing on the fo rm of  selection. 

N u m e r i c a l  e x a m p l e  

H y p o t h e t i c a l  wean ing  weights  ( a rb i t r a ry  units) for  e ight  
pa ren t -o f f spr ing  pai rs  of beef  ca t t le  ra i sed  under  two dif- 
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ferent  m a n a g e m e n t  systems are  given in Table  1. The  
incidence mat r ices  c o r r e s p o n d i n g  to these d a t a  are 

- 1 0 q  - 1 0 -  

1 OI 1 0 
1 01 0 1 
1 01 0 1 

W p =  1 01 and  W ~  1 0 

0 II 1 0 
0 11 0 1 

_0 ~] _0 1_ 

and  the ma t r i x  W is 

- 1 0 1 0 -  

1 0 1 0 
1 0 0 1 
1 0 0 1 

W =  
1 0 1 0 
0 1 1 0 
0 1 0 1 
0 1 0 1 

The  res iduals  ~p and  ~o can be ca lcu la ted  as 

[gp, go] = [P, O] --  W ( W '  W ) -  W '  [P, O] 

where  P and  O are the wean ing  weights  of the pa ren t s  
and  offspring, respect ively,  f rom Table  1. The  regress ion  
es t imate  of offspring on parent ,  t ak ing  in to  accoun t  the 
different m a n a g e m e n t  systems,  is 

02 = ~'p~o/(~'p~p) = 1.06/7.63 = 0.14 

and  

ta 2 = 202 = 0.28 

An  es t imate  of the var iance  of 02 can  be o b t a i n e d  by  
subs t i tu t ing  lq 2 for h 2 in (19). Thus,  Var (a )  = 0.33. The  
"usual"  regress ion es t imate  of  h 2 for this d a t a  is 0.15. 

Table 1. Data for numerical example 

Parents Offspring 

MS a WW b MS a W W  b 

1 3.52 1 5.53 
1 4.62 1 4.31 
1 6.70 2 6.87 
1 3.03 2 6.07 
1 4.31 1 5.73 
2 5.71 1 4.72 
2 5.63 2 6.02 
2 5.70 2 4.89 

a Management system 
b Weaning weight in arbitrary units 
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Conclusion 

When all observations have the same mean, the estimator 
presented here reduces to the "usual" offspring-parent 
regression estimator. The distribution and variance of the 
"usual" estimator are given by (18) and (19), with r = 1, 
in agreement with Kendall and Stuart (1977). The vari- 
ance of the "usual" regression estimator has been given 
incorrectly by others (e.g., Pirchner 1969; Falconer 1981) 
with ( n - 2 )  in the denominator of (19). As with the 
"usual" offspring-parent regression estimator, this gener- 
alized regression estimator remains unbiased with the 
selection of parents. The numerator and denominator 
however, will be biased and the distribution of the estima- 
tor will be altered when selection occurs. 
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